

NISOTEC REDOL

NISOTEC REDOL are high quality, extreme-pressure oils designed, primarily, for the lubrication of heavy duty closed industrial gears. Their high load carrying capacity offer superior performance in industrial applications of gears. They are formulated using extreme pressure additive which allows excellent application in the following areas: steel gear transmissions, industrial gear drives where a full EP performance is required, bearings, circulating and splash lubricated systems. Features and Benefits:

- Excellent load carrying capacity
- Outstanding oxidation and thermal stability
- Effective corrosion inhibition
- Wide range of viscosities
- Excellent water separation properties

Performance Levels: SRPS ISO 6743-6 (L-CKC/CKD), SRPS ISO 12925-1(L-CKC/CKD), DIN 51517 part 3 (CLP), AGMA 9005-E02, AISE/USS 224, Cincinnati Mashine EP gear oil, David Brown S1.53.101

Characteristics

	Units	Typical Values									
Properties		VG 68	VG 100	VG 150	VG 220	VG 320	VG 460	VG 680	VG 1000	Methods	
Density	g/m³	0.87	0.88	0.89	0.89	0.90	0.90	0.91	0.91	SRPS EN ISO 3675	
Kinematic viscosity at 40°C	mm²/s	68	100	150	220	320	460	680	1000	SRPS ISO 3104	
Index viscosity	-	95	95	90	90	90	90	85	85	SRPS ISO 2909	
Flash point, COC	°C	220	230	235	240	245	255	260	245	SRPS EN ISO 2592	
Pour point	°C	-21	-18	-18	-18	-12	-12	-9	-6	SRPS ISO 3016	
Demulsibility, (max. ml 43-37-0/ 40-37-3)	minut	10	10	10	15	15	15	15	15	ASTM D1401	
Copper corossion (3h, 100°C)	mark	1	1	1	1	1	1	1	1	SRPS ISO 2160	
Foaming, max Seq I Seq II Seq III	mL/mL	50/0 50/0 50/0	SRPS ISO 6247								

Storage and handling instructions

Store in the original container, in dry well ventilated area. Protect from direct atmospheric influences. Follow storing and handling instructions given in SDS.

Packaging

0.1L	0.25L	0.5L	1L	2L	4L	10L	20L	60L	180KG	IBC	AC
						Х			Х	Х	Х